9. After meeting every participant shake hands with every other participant. If the number of handshakes is 66 find the number of participants in the meeting.

Answer- 

 Let there be n participants present in the meeting.                    

 A handshake occurs between 2 persons.

 ∴ Number of handshakes = nC2            

 Given 66 handshakes were exchanged.            

 ∴ 66 = nC2                                                           

 ∴ 66 =$\frac{n!}{2!(n-2)!}$                 

 ∴ 66 × 2 =$\frac{n(n-1)(n-2)!}{(n-2)!}$

 ∴ 132 = n(n – 1)                                                   

 ∴ n(n – 1) = 12 × 11                            

 Comparing on both sides, we get                  

 n = 12                                                                  

 ∴ 12 participants were present at the meeting.

10. If 20 points are marked on a circle how many chords can be drawn?

Answer-

There are 20 points on a circle.To draw a chord, 2 points are required.

∴ the number of chords that can be drawn through 20 points on the circle.

= 20C2

$=\frac{20!}{{2!18!}$ 

$=\frac{20×19×18!}{{2×1×18!}$            

= 190.

11.find the number of diagonals of an n sided polygon. In particular, find the number of diagonals when.

a) n=10     b)n=15   c)n=12   d)n =8

Answer-

a)In an n-sided polygon, there are ‘n’ points and ‘n’ sides.               

∴ Through ‘n’ points we can draw nC2 lines including sides.

∴ Number of diagonals in n sided polygon.

= nC2 – n .........(n = number of sides)           

n = 10                                                             

nC2 – n = 10C2 – 10                                

$\frac{{10.9}}{1.2}}-10$                   

= 45 – 10                                                         

= 35

b)There are n vertices in the polygon of n-sides.

 If we join any two vertices, we get either side or the diagonal of the polygon.  

Two vertices can be joined in nC2 ways.      

∴ total number of sides and diagonals = nC2 But there are n sides in the polygon.        

∴ total number of the diagonals = nC2 – n       

n = 15 sides                                                       

∴ the number of diagonal that can be drawn. 

= 15C2 – 15                              

=$\frac{15×14×13!}}{2×13!}$-15

=15×142-15

= 105 – 15       

= 90

c)In an n-sided polygon, there are ‘n’ points and ‘n’ sides.

∴ Through ‘n’ points we can draw nC2 lines including sides.      

$∴ Number of diagonals in n sided polygon.$

= nC2 – n   ...(n = number of sides)

n = 12, 

nC2 – n  = 12C2 – 121 

=\frac{2×11}{1×2}-12

= 66 – 12                                                               

= 54

d)There are n vertices in the polygon of n-sides.          

  If we join any two vertices, we get either side or the diagonal of the polygon.

Two vertices can be joined in nC2 ways.          

∴ total number of sides and diagonals = nC2

But there are n sides in the polygon.

∴ total number of the diagonals = nC2 – n 

n = 8 sides                                               

∴ the number of diagonals that can be drawn 

Related Posts :- 

Permutation Combination Exercise 3.1

Permutation Combination Exercise 3.2

Permutation Combination Exercise 3.3

Permutation Combination Exercise 3.4

Permutation Combination Exercise 3.5


Permutation and Combination Exercise 3.6 11th Class MH Board
Permutation and Combination Exercise 3.6 11th Class MH Board


Permutation and Combination Exercise 3.6 11th Class MH Board