Differentiate the following w.r.t x Exercise 1.1

3)Differentiate the following w.r.t x :

(iv)(x35)5(x3+5)3

Solution-

dydx=ddx(x35)5(x3+5)3

=(x3+5)3ddx(x35)5(x35)5ddx(x3+5)3((x3+5)3)2

=(x3+5)35(x35)4dydx(x35)(x35)53(x3+5)2ddx(x3+5)(x3+5)6

=(x3+5)35(x35)4(3x20)(x35)53(x3+5)2(3x2+0)(x3+5)6

=15x2(x3+5)3(x35)49x2(x35)5(x3+5)2(x3+5)6

 (i)(x2+4x+1)3+(x35x2)4

(ii)(1+4x)5(3x+xx2)8

(iii)x73x

(iv)(x35)5(x3+5)3

(v)(1+sin2x)2+(1+cos2)3

(vi)cosx+cosx

(vii)log(sec3x+tan3x)

(viii)1+sinx1sinx

(ix)cot(logx2)log(cotx2)

(x)e2xe2xe2x+e2x

(xi)ex+1ex1

(xii)log[tan3xsin4x(x2+7)]

(xiii)log[1cos3x1+cos3x]

(xiv)log[1+cos5x21cos5x2]

(xv)log[1sinx1+sinx]

Differentiate following w.r.t x Exercise 1.1 iv
Differentiate following w.r.t x Exercise 1.1 iv