Differentiate the following w.r.t x Exercise 1.1 (ii)
3)Differentiate the following w.r.t x :
(ii)$(1+4x)^5(3x+x-x^2)^8$
Solution-
$\frac{dy}{dx}=\frac{d}{dx}(1+4x)^5(3x+x-x^2)^8$
$=(1+4x)^5\frac{d}{dx}(3x+x-x^2)^8+(3x+x-x^2)^8\frac{d}{dx}(1+4x)^5$
$=(1+4x)^5(3+1-2x)+(3x+x-x^2)^85(1+4x)\frac{d}{dx}(1+4x)$
$=(1+4x)^5(3+1-2x)+(3x+x-x^2)^85(1+4x)(4)$
$=(1+4x)^5(4-2x)+20(3x+x-x^2)^8(1+4x)$
(i)$(x^2+4x+1)^3+(x^3-5x-2)^4$
(iv)$\frac{(x^3-5)^5}{(x^3+5)^3}$
(vi)$\sqrt{cos x}+\sqrt{cos\sqrt{x}}$
(viii)$\frac{1+sin x^{\circ}}{1-sin x^{\circ}}$
(ix)$cot\left(\frac{log x}{2}\right)-log\left(\frac{cot x}{2}\right)$
(x)$\frac{e^{2x}-e^{-2x}}{e^{2x}+e{-2x}}$
(xi)$\frac{e^{\sqrt{x}}+1}{e^{\sqrt{x}}-1}$
(xii)$log\left[ tan^3xsin^4x(x^2+7)\right]$
(xiii)$log\left[\sqrt{\frac{1-cos3x}{1+cos3x}}\right]$
(xiv)$log\left[\sqrt{\frac{1+cos\frac{5x}{2}}{1-cos\frac{5x}{2}}}\right]$
(xv)$log\left[\sqrt{\frac{1-sinx}{1+sinx}}\right]$
![]() |
Differentiate the following w.r.t x Exercise 1.1 (ii) |