Differentiate the following w.r.t x Exercise 1.1 (ii)
3)Differentiate the following w.r.t x :
(ii)(1+4x)5(3x+x−x2)8
Solution-
dydx=ddx(1+4x)5(3x+x−x2)8
=(1+4x)5ddx(3x+x−x2)8+(3x+x−x2)8ddx(1+4x)5
=(1+4x)5(3+1−2x)+(3x+x−x2)85(1+4x)ddx(1+4x)
=(1+4x)5(3+1−2x)+(3x+x−x2)85(1+4x)(4)
=(1+4x)5(4−2x)+20(3x+x−x2)8(1+4x)
(i)(x2+4x+1)3+(x3−5x−2)4
(iii)x√7−3x
(iv)(x3−5)5(x3+5)3
(v)(1+sin2x)2+(1+cos2)3
(vi)√cosx+√cos√x
(vii)log(sec3x+tan3x)
(viii)1+sinx∘1−sinx∘
(ix)cot(logx2)−log(cotx2)
(x)e2x−e−2xe2x+e−2x
(xi)e√x+1e√x−1
(xii)log[tan3xsin4x(x2+7)]
(xiii)log[√1−cos3x1+cos3x]
(xiv)log[√1+cos5x21−cos5x2]
(xv)log[√1−sinx1+sinx]
 |
Differentiate the following w.r.t x Exercise 1.1 (ii) |