Differentiate the following w.r.t x Exercise 1.1 (ii)

3)Differentiate the following w.r.t x :

 (ii)(1+4x)5(3x+xx2)8

Solution-

dydx=ddx(1+4x)5(3x+xx2)8

=(1+4x)5ddx(3x+xx2)8+(3x+xx2)8ddx(1+4x)5

=(1+4x)5(3+12x)+(3x+xx2)85(1+4x)ddx(1+4x)

=(1+4x)5(3+12x)+(3x+xx2)85(1+4x)(4)

=(1+4x)5(42x)+20(3x+xx2)8(1+4x)

(i)(x2+4x+1)3+(x35x2)4

(iii)x73x

(iv)(x35)5(x3+5)3

(v)(1+sin2x)2+(1+cos2)3

(vi)cosx+cosx

(vii)log(sec3x+tan3x)

(viii)1+sinx1sinx

(ix)cot(logx2)log(cotx2)

(x)e2xe2xe2x+e2x

(xi)ex+1ex1

(xii)log[tan3xsin4x(x2+7)]

(xiii)log[1cos3x1+cos3x]

(xiv)log[1+cos5x21cos5x2]

(xv)log[1sinx1+sinx]


Differentiate following w.r.t x Exercise 1.1 (ii)
Differentiate the following w.r.t x Exercise 1.1 (ii)