Differentiate following w.r.t x Exercise 1.1 vii

  Differentiate the following w.r.t x Exercise 1.1

3)Differentiate the following w.r.t x :

(vii)$log(sec 3x+tan 3x)$

Solution-

$\frac{dy}{dx}=\frac{d}{dx}log(sec 3x+tan 3x)$

$\frac{dy}{dx}=\frac{1}{(sec 3x+tan 3x)}\frac{d}{dx}(sec 3x+tan 3x)$

$=\frac{1}{(sec 3x+tan 3x)}(sec3xtan 3x+sec^2x)$

$=\frac{sec3xtan3x+sec^2x}{(sec 3x+tan 3x)}$

(i)$(x^2+4x+1)^3+(x^3-5x-2)^4$

(ii)$(1+4x)^5(3x+x-x^2)^8$

(iii)$\frac{x}{\sqrt{7-3x}}$

(iv)$\frac{(x^3-5)^5}{(x^3+5)^3}$

(v)$(1+sin^2x)^2+(1+cos^2)^3$


(viii)$\frac{1+sin x^{\circ}}{1-sin x^{\circ}}$

(ix)$cot\left(\frac{log x}{2}\right)-log\left(\frac{cot x}{2}\right)$

(x)$\frac{e^{2x}-e^{-2x}}{e^{2x}+e{-2x}}$

(xi)$\frac{e^{\sqrt{x}}+1}{e^{\sqrt{x}}-1}$

(xii)$log\left[ tan^3xsin^4x(x^2+7)\right]$

(xiii)$log\left[\sqrt{\frac{1-cos3x}{1+cos3x}}\right]$

(xiv)$log\left[\sqrt{\frac{1+cos\frac{5x}{2}}{1-cos\frac{5x}{2}}}\right]$

(xv)$log\left[\sqrt{\frac{1-sinx}{1+sinx}}\right]$

Differentiate following w.r.t x Exercise 1.1 vii
Differentiate following w.r.t x Exercise 1.1 vii