1. Evaluate:
(i) 8!
=8×7×6×5×4×3×2×1
=40320
(ii)10!
=10×9×8×7×6×5×4×3×2×1
=3628800
(iii)10!-6!
=10×9×8×7×6!-6!
=6!(10×9×8×7-1)
=3628080
(iv) (10-6)!
=4!
=4×3×2×1
=24
2. Compute
(i) 12!6!
= 12!6!
=12x11x10x9x8x7x6!6!
=12×11×10×9×8×7
=665280
(ii)(126)!
= (126)!
= 2!
=2
(iii) (3×2)!
= 6!
=6×5×4×3×2×1
=720
(iv) 3!×2!
= 3×2×1×2×1
=12
(v)9!3! 6!
=9 8 7 6!3! 6!
=5046
=84
(vi)6!-4!4!
=6×5×4!-4!4!
=4!(6×5-14!)
=30-1
=29
(vii)8!6!-4!
=8×7×6×5×4!6×5×4!-4!
=4!4!(8×7×6×56×5-1)
=168030-1
=57.93
(viii)8!(6-4)!
=8!(6-4)!
=8×7×6×5×4×3×2!2!
=40320
3. Write in terms of factorials
(i)5×6×7×8×9×10
=10×9×8×7×6×5×4×3×2×14×3×2×1
=10!4!
(ii)3×6×9×12×15
=1×3×2×3×3×3×4×3×5×3
=1×2×3×4×5×3×3×3×3×3
=5!×35
(iii)6×7×8×9
=9×8×7×6×5×4×3×2×15×4×3×2×1
=9!5!
(iv) 5×10×15×20
=1×5×2×5×3×5×4×5
=4!×54
4. Evaluate
n!r!(n−r)! for
(i) n=8, r=6 (i) n=12, r=12 (i) n=15, r=10 (i) n=15, r=8
solution:
(i)8!6!(8-6)!
=8×7×6!6!2!
=562=28
(ii) 12!12!(12-12)!
=10!
=1
(iii)15!10!(15-10)!
=151413121110!10!5!
=360360120
=3003
(iv) 15!8!(15-8)!
=15×14×13×12×11×10×9×8!8!5!
=32432400120
=270270
5. Find n, if
(i)n8!=36!+1!2!
n8!=3 4!+6!!4!
n8!=4!3+6 56!4!
n8!=3+306!
n8!=336!
n=33×8×7×6!6!
n=1848
(ii)n6!=48!+36!
n6!=4 6!+3×8!8!6!
n6!=6!(4+3×8×7)8!6!
n=4+3×8×78×7
=4(1+3×8×7)8×7
=1+4214
=4314
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2 |
6. Find n if :
(i)(17-n)!(14-n)!=5!
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2 |
(ii)(15-n)!(13-n)!=12
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2 |
(iii)n!3!(n-3)!:n!5!(n-5)!=5:3
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2
|
(iv)n!3!(n-3)!:n!5!(n-7)!=1:6
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2 |
|
(v)n!3!(n-3)!:n!5!(n-5)!=24:1
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2
|
8. Show that
n!r!(n-r)!+n!(r-1)!(n-r+1)!=(n+1)!r!(n-r+1)!
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2
|
9. Show that
9!3!6!+9!4!5!=10!4!6!
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2
|
10. Show that
(2n)!n!=2n(2n−1)(2n−3)....5.3.1
10.Simplify
(i)(2n+1)!(2n)!
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2
|
(ii)(n+3)!(n2−4)(n+1)!
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2
|
(iii)1n!−1(n-2)!
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2
|
(iv) n[n!+(n−1)!]+n2(n−1)!+(n+1)!
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2
|
(v)n+2n!−3n+1(n+1)!
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2 |
(vi)1(n−1)!+1-n(n+1)!
 |
(vi)1(n-1)!+1-n(n+1)! |
(vii)1n!−3(n+1)!−n2−4(n+2)!
 |
(vii)1n!−3(n+1)!−n2−4(n+2)! |
(viii)n2−9(n+3)!+6(n+3)!−1(n+1)!
 |
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2
|
Maharashtra Board EXERCISE 3.2
Written by Javeda , edit By Mukesh