Differentiate following w.r.t x Exercise 1.1 XIV

 Differentiate the following w.r.t x Exercise 1.1

3)Differentiate the following w.r.t x :

(xiv)log[1+cos5x21cos5x2]

Solution-

dydx=ddx(log[1+cos5x21cos5x2])

=11+cos5x21cos5x2ddx(1+cos5x21cos5x2)

=11+cos5x21cos5x2121+cos5x21cos5x2ddx(1+cos5x21cos5x2)

=11+cos5x21cos5x2121+cos5x21cos5x2((1cos5x2)ddx(1+cos5x2)(1+cos5x2)ddx(1cos5x2)(1cos5x2)2)

=12(1+cos5x21cos5x2)[(1cos5x2)(0+sin5x2ddx5x2)(1+cos5x2)(0+sin5x2)ddx5x2(1cos5x2)2]

=12(1+cos5x21cos5x2)[(1cos5x2)(sin5x2)52(1+cos5x2)(sin5x2)52(1cos5x2)2]

=12(1+cos5x21cos5x2)[2(sin5x2)52(1cos5x2)2]

=(1cos5x2)2(1+cos5x2)[5(sin5x2)(1cos5x2)2]

=12(1+cos5x2)[5(sin5x2)(1cos5x2)]

=5(sin5x2)2(1cos2(5x2))

=5(sin5x2)2(sin2(5x2))

=52(sin(5x2))

(i)(x2+4x+1)3+(x35x2)4

(ii)(1+4x)5(3x+xx2)8

(iii)x73x

(iv)(x35)5(x3+5)3

(v)(1+sin2x)2+(1+cos2)3





(xiv)log[1+cos5x21cos5x2]

(xv)log[1sinx1+sinx]


Differentiate following w.r.t x Exercise 1.1 XIV
Differentiate following w.r.t x Exercise 1.1 XIV