Differentiate the following w.r.t x Exercise 1.1
3)Differentiate the following w.r.t x :
(xiv)log[√1+cos5x21−cos5x2]
Solution-
dydx=ddx(log[√1+cos5x21−cos5x2])
=1
⎷1+cos5x21−cos5x2ddx(√1+cos5x21−cos5x2)
=1
⎷1+cos5x21−cos5x212
⎷1+cos5x21−cos5x2ddx(1+cos5x21−cos5x2)
=1
⎷1+cos5x21−cos5x212
⎷1+cos5x21−cos5x2((1−cos5x2)ddx(1+cos5x2)−(1+cos5x2)ddx(1−cos5x2)(1−cos5x2)2)
=12(1+cos5x21−cos5x2)[(1−cos5x2)(0+sin5x2ddx5x2)−(1+cos5x2)(0+sin5x2)ddx5x2(1−cos5x2)2]
=12(1+cos5x21−cos5x2)[(1−cos5x2)(sin5x2)52−(1+cos5x2)(sin5x2)52(1−cos5x2)2]
=12(1+cos5x21−cos5x2)[2(sin5x2)52(1−cos5x2)2]
=(1−cos5x2)2(1+cos5x2)[5(sin5x2)(1−cos5x2)2]
=12(1+cos5x2)[5(sin5x2)(1−cos5x2)]
=5(sin5x2)2(1−cos2(5x2))
=5(sin5x2)2(sin2(5x2))
=52(sin(5x2))
(i)(x2+4x+1)3+(x3−5x−2)4
(ii)(1+4x)5(3x+x−x2)8
(iii)x√7−3x
(iv)(x3−5)5(x3+5)3
(v)(1+sin2x)2+(1+cos2)3
(xiv)log[√1+cos5x21−cos5x2]
(xv)log[√1−sinx1+sinx]
 |
Differentiate following w.r.t x Exercise 1.1 XIV |