Differentiation Exercise 1.1
Differentiation Exercise 1.1 12th Class Math Maharashtra Board
2 Differentiate the following w.r.t x
(i)cos(x2+a2)
Solution-
y=cos(x2+a2)
differentiate w.r.t x
dydx=−sin(x2+a2)ddx(x2+a2)
(ii)√e3x+2+5
Solution-
differentiate w.r.t x
dydx=1√e3x+2+5ddx(e3x+2+5)
=12√e3x+2+5e3x+2ddx(3x+2)+0
=12√e3x+2+5e3x+2(3×1+0)
=32√e3x+2+5e3x+2
(iii)√tan√tan(x)
Solution-
differentiate w.r.t x
dydx=12√tan√tan(x)×ddxtan√tan(x)
=12√tan√tan(x)×sec2(√tan(x))ddx√tan(x)
=12√tan√tan(x)×sec2(√tan(x))12√tan(x)ddxtan(x)
$\frac{dy}{dx}=\frac{sec^2(\sqrt{tan(x)})}{2\sqrt{tan\sqrt{tan(x)}}}\times \frac{sec^2x}{2\sqrt{tan(x)}}
(iv)√tan√x
Solution-
differentiate w.r.t x
dydx=ddx√tan√x
=12√tan√xddxtan√x
=12√tan√xsec2√xddx√x
=12√tan√xsec2√x12√x
=sec2√x4√x√tan√x
(v)cot3[log(x3)]
differentiate w.r.t x
dydx=ddxcot3[log(x3)]
=3cot2[log(x3)]ddx[log(x3)]
=3cot2[log(x3)]1[log(x3)]ddx(x3)
=3cot2[log(x3)]3x2[log(x3)]
(vi)5sin3x+3
Solution-
differentiate w.r.t x
dydx=ddx(5sin3x+3)
=5sin3x+3×log5×ddx(sin3x+3)
=5sin3x+3×log5×(3sin2xddx(sinx)+0)
dydx=5sin3x+3×log5×(3sin2xcosx)
(vii)cosec(√cosx)
Solution-
differentiate w.r.t x
dydx=ddxcosec(√cosx)
=−cosec(√cosx)sec(√cosx)ddx(√cosx)
=−cosec(√cosx)sec(√cosx)12√cosxddxcosx
=−cosec(√cosx)sec(√cosx)−sinx2√cosx
=sinxcosec(√cosx)sec(√cosx)2√cosx
(viii)log[cos(x3−5)
Solution-
differentiate w.r.t x
dydx=ddx(log[cos(x3−5)])
=1cos(x3−5)ddx[cos(x3−5)]
=1cos(x3−5)[−sin(x3−5)ddx(x3)−0]
=−3x2sin(x3−5)cos(x3−5)
=−3x2tan(x3−5)
(ix)e3sin2x−2cos2x
Solution-
differentiate w.r.t x
dydx=ddx(e3sin2x−2cos2x)
=e3sin2x−2cos2xddx(3sin2x−2cos2x)
=e3sin2x−2cos2x×(6sinxddxsinx−4cosxddxcosx)
=e3sin2x−2cos2x×(6sinx.cosx+4cosx.sinx)
(x)cos2[log(x2+7)]
Solution-
differentiate w.r.t x
dydx=ddxcos2[log(x2+7)]
=2cos[log(x2+7)]ddxcos[log(x2+7)]
=−2cos[log(x2+7)]sin[log(x2+7)]ddx[log(x2+7)]
=−2cos[log(x2+7)]sin[log(x2+7)]1(x2+7)ddx(x2+7)
=−2cos[log(x2+7)]sin[log(x2+7)]1(x2+7)(2x+0)
=−2cos[log(x2+7)]2xsin[log(x2+7)](x2+7)
=−2xsin[log(x2+7)]x2+7
(xi)tan[cos(sinx)]
Solution-
differentiate w.r.t x
dydx=ddxtan[cos(sinx)]
=sec2[cos(sinx)]ddx[cos(sinx)]
=sec2[cos(sinx)]×−sin(sinx)ddx(sinx)
=−sec2[cos(sinx)]×sin(sinx)×cosx
(xii)sec[x4+4]
Solution-
differentiate w.r.t x
dydx=ddx{sec[tan(x4+4)]}
=sec[tan(x4+4)]tan[tan(x4+4)]ddx[tan(x4+4)]
=sec[tan(x4+4)]tan[tan(x4+4)]sec2(x4+4)ddx(x4+4)
=sec[tan(x4+4)]tan[tan(x4+4)]sec2(x4+4)×(4x3+0)
=4x3.sec2(x4+4)sec[tan(x4+4)]tan[tan(x4+4)]
(xiii)e[(logx)2−logx2]
Solution-
differentiate w.r.t x
dydx=ddxe[(logx)2−logx2]
=e[(logx)2−logx2]ddx[(logx)2−logx2]
=e[(logx)2−logx2][2(logx)ddx(logx)−1x2ddxx2]
=e[(logx)2−logx2][2(logx)1x−1x22x]
=e[(logx)2−logx2][2(logx)x−2x]
(xiv)loge2(logx)
Solution-
differentiate w.r.t x\\
\frac{dy}{dx}=\frac{d}{dx}sin\sqrt{sin\sqrt{x}}$
=sin√sin√xddx√sin√x
=sin√sin√x12√sin√xddxsin√x
=sin√sin√x2√sin√xcos√xddx√x
=sin√sin√xcos√x2√sin√x12√x
=sin√sin√xcos√x4√x√sin√x
(xv)log[sec(e^{x}^2)]$
Solution-
differentiate w.r.t x
(xvi)log_{e^2}(log x)$
Solution-
differentiate w.r.t x
dydx=ddxloge2(logx)
=log(logx)loge2
=1loge21logxddx(logx)
=1logxloge21x
=1xlogxloge2
=12xlogx
(xvii)[log[log(x)]]
Solution-
differentiate w.r.t x
dydx=ddx[log[log(log(x))]]2
=2[log[log(log(x))]]ddx[log[log(log(x))]]
=2[log[log(log(x))]]1log(log(x))ddx[log(log(x))]
=2[log[log(log(x))]]1log(log(x))1logxddx(logx)
=2[log[log(log(x))]]1log(log(x))1logx1x
=2[log[log(log(x))]]xlog(logx)logx
(xviii)sin2x2−cos2x2
Solution-
differentiate w.r.t x
dydx=ddxsin2x2−cos2x2
=2sinx2ddxsinx2−2cosx2ddxcosx2
=2sinx2cosx2ddxx2+2cosx2sinx2ddxx2
=4xsinx2cosx2+4xcosx2sinx2
=4x(sinx2cosx2+cosx2sinx2)
=4xsin(2x2)
Differentiation Exercise 1.1 question 2) pdf
 |
Differentiation Exercise 1.1 |