Differentiation Exercise 1.1

Differentiation Exercise 1.1 12th Class Math Maharashtra Board

2 Differentiate the following w.r.t x

 (i)cos(x2+a2)

Solution-

y=cos(x2+a2)

differentiate w.r.t x

dydx=sin(x2+a2)ddx(x2+a2)

(ii)e3x+2+5

Solution-

differentiate w.r.t x

dydx=1e3x+2+5ddx(e3x+2+5)

=12e3x+2+5e3x+2ddx(3x+2)+0

=12e3x+2+5e3x+2(3×1+0)

=32e3x+2+5e3x+2

(iii)tantan(x)

Solution-

differentiate w.r.t x

dydx=12tantan(x)×ddxtantan(x)

=12tantan(x)×sec2(tan(x))ddxtan(x)

=12tantan(x)×sec2(tan(x))12tan(x)ddxtan(x)

$\frac{dy}{dx}=\frac{sec^2(\sqrt{tan(x)})}{2\sqrt{tan\sqrt{tan(x)}}}\times \frac{sec^2x}{2\sqrt{tan(x)}}

(iv)tanx

Solution-

differentiate w.r.t x

dydx=ddxtanx

=12tanxddxtanx

=12tanxsec2xddxx

=12tanxsec2x12x

=sec2x4xtanx

(v)cot3[log(x3)]

differentiate w.r.t x

dydx=ddxcot3[log(x3)]

=3cot2[log(x3)]ddx[log(x3)]

=3cot2[log(x3)]1[log(x3)]ddx(x3)

=3cot2[log(x3)]3x2[log(x3)]

(vi)5sin3x+3

Solution-

differentiate w.r.t x

dydx=ddx(5sin3x+3)

=5sin3x+3×log5×ddx(sin3x+3)

=5sin3x+3×log5×(3sin2xddx(sinx)+0)

dydx=5sin3x+3×log5×(3sin2xcosx)

(vii)cosec(cosx)

Solution-

differentiate w.r.t x

dydx=ddxcosec(cosx)

=cosec(cosx)sec(cosx)ddx(cosx)

=cosec(cosx)sec(cosx)12cosxddxcosx

=cosec(cosx)sec(cosx)sinx2cosx

=sinxcosec(cosx)sec(cosx)2cosx

(viii)log[cos(x35)

Solution-

differentiate w.r.t x

dydx=ddx(log[cos(x35)])

=1cos(x35)ddx[cos(x35)]

=1cos(x35)[sin(x35)ddx(x3)0]

=3x2sin(x35)cos(x35)

=3x2tan(x35)

(ix)e3sin2x2cos2x

Solution-

differentiate w.r.t x

dydx=ddx(e3sin2x2cos2x)

=e3sin2x2cos2xddx(3sin2x2cos2x)

=e3sin2x2cos2x×(6sinxddxsinx4cosxddxcosx)

=e3sin2x2cos2x×(6sinx.cosx+4cosx.sinx)

(x)cos2[log(x2+7)] 

Solution-

differentiate w.r.t x

dydx=ddxcos2[log(x2+7)]

=2cos[log(x2+7)]ddxcos[log(x2+7)]

=2cos[log(x2+7)]sin[log(x2+7)]ddx[log(x2+7)]

=2cos[log(x2+7)]sin[log(x2+7)]1(x2+7)ddx(x2+7)

=2cos[log(x2+7)]sin[log(x2+7)]1(x2+7)(2x+0)

=2cos[log(x2+7)]2xsin[log(x2+7)](x2+7)

=2xsin[log(x2+7)]x2+7

(xi)tan[cos(sinx)] 

Solution-

differentiate w.r.t x

dydx=ddxtan[cos(sinx)]

=sec2[cos(sinx)]ddx[cos(sinx)]

=sec2[cos(sinx)]×sin(sinx)ddx(sinx)

=sec2[cos(sinx)]×sin(sinx)×cosx

(xii)sec[x4+4] 

Solution-

differentiate w.r.t x

dydx=ddx{sec[tan(x4+4)]}

=sec[tan(x4+4)]tan[tan(x4+4)]ddx[tan(x4+4)]

=sec[tan(x4+4)]tan[tan(x4+4)]sec2(x4+4)ddx(x4+4)

=sec[tan(x4+4)]tan[tan(x4+4)]sec2(x4+4)×(4x3+0)

=4x3.sec2(x4+4)sec[tan(x4+4)]tan[tan(x4+4)]

(xiii)e[(logx)2logx2]  

Solution-

differentiate w.r.t x

dydx=ddxe[(logx)2logx2]

=e[(logx)2logx2]ddx[(logx)2logx2]

=e[(logx)2logx2][2(logx)ddx(logx)1x2ddxx2]

=e[(logx)2logx2][2(logx)1x1x22x]

=e[(logx)2logx2][2(logx)x2x]

(xiv)loge2(logx) 

Solution-

differentiate w.r.t x\\

\frac{dy}{dx}=\frac{d}{dx}sin\sqrt{sin\sqrt{x}}$

=sinsinxddxsinx

=sinsinx12sinxddxsinx

=sinsinx2sinxcosxddxx

=sinsinxcosx2sinx12x

=sinsinxcosx4xsinx

(xv)log[sec(e^{x}^2)]$ 

Solution-

differentiate w.r.t x



(xvi)log_{e^2}(log x)$ 

Solution-

differentiate w.r.t x

dydx=ddxloge2(logx)

=log(logx)loge2

=1loge21logxddx(logx)

=1logxloge21x

=1xlogxloge2

=12xlogx

(xvii)[log[log(x)]] 

Solution-

differentiate w.r.t x

dydx=ddx[log[log(log(x))]]2

=2[log[log(log(x))]]ddx[log[log(log(x))]]

=2[log[log(log(x))]]1log(log(x))ddx[log(log(x))]

=2[log[log(log(x))]]1log(log(x))1logxddx(logx)

=2[log[log(log(x))]]1log(log(x))1logx1x

=2[log[log(log(x))]]xlog(logx)logx

(xviii)sin2x2cos2x2 

Solution-

differentiate w.r.t x

dydx=ddxsin2x2cos2x2

=2sinx2ddxsinx22cosx2ddxcosx2

=2sinx2cosx2ddxx2+2cosx2sinx2ddxx2

=4xsinx2cosx2+4xcosx2sinx2

=4x(sinx2cosx2+cosx2sinx2)

=4xsin(2x2)

Differentiation Exercise 1.1 question 2) pdf


Differentiation Exercise 1.1
Differentiation Exercise 1.1