(i) y=√sinx3
dydx=1sinx3ddx(sinx3)
=12√sinx3cosx3ddxx3
=cosx3sinx33x2
=3x2cosx3sinx3
(ii)y=log[cos(x5)]
dydx=ddx(log[cos(x5)])
=1cos(x5)ddx[cos(x5)]
=1cos(x5)−sinx5ddxx5
=−sinx5cosx55x3
=−5x3cosx5
(iii)y=cot2(x3)
dydx=2cot(x3)ddx[cot(x3)]
=2cot(x3)−cosecx3ddxx3
=−2cot(x3)cosec2(x3)3x2
=−6x2cot(x3)cosec2(x3)
(iv)y=log[cos(x5)]
dydx=1cos(x5)×ddxcos(x5)
=1cos(x5)×−sin(x5)ddxx5
= −sin(x5)cos(x5)5x4
= −5x4sin(x5)cos(x5)
(v)y=(x3+2x−3)4(x+cosx)3
dydx=4(x3+2x−3)3ddxx3+2x−3×3(x+cosx)2ddxx+cosx
=4(x3+2x−3)3(3x2+2)×3(x+cosx)2(1−sinx)
(vi)y=(1+cos2x)4×√x+√tanx
dydx=ddx(1+cos2x)4×√x+√tanx
=(1+cos2x)4ddx√x+√tanx+√x+√tanxddx(1+cos2x)4
=(1+cos2x)412√x+√tanxddx(x+√tanx)+√x+√tanx×4 (1+cos2x)3ddx(1+cos2x)
=(1+cos2x)412√x+√tanx(1+12√tanx)ddxtanx+√x+√tanx×4 (1+cos2x)3×ddx(1+cos2x)
=(1+cos2x)412√x+√tanx(1+12√tanx)sec2x√x+√tanx×4 (1+cos2x)3×2cosxddxcosx
=(1+cos2x)412√x+√tanx×1+12√tanxsec2x√x+√tanx×4(1+cos2x)3×−2cosxsinx
![]() |
Differentiate the following w.r.t x |