Exercise 3.6 7) 8) 9)

 7.Find the number of ways of drawing 9 balls from a bag that has 6 red balls 8 green balls and 7 blue was so that three balls of every colour are drawn.

Answer-

Total number ways of balls=8+5+7=18

Number of red balls=6

Number of green balls=5

Number of blue balls=7

9 balls are to be drawn 3 of each colour,

No. of ways of drawing 3 red balls of 6 red balls=$^6C_3$

similarly 3 green balls out of 5 geen balls=$^5C_3$

3 blue ball out of 7 blue balls=$^7C_3$

\therefore $total number ways$=$^6C_3\times^5C_3\times^7C_3$

=$\frac{6!}{3!3!}\times \frac{5!}{3!2!} \times \frac{7!}{3!4!}$

$=20 \times 10 \times 35 $

=7000 

8.It. find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls. 

Answer-

there are 6 boys and 4 girls

we have to select 3 boys out of 6 boys=$^6C_3$

we have to select 2 girls out of 4 girls=$^4C_2$

$\therefore$ total number of ways

=$^6C_3 \times ^4C_2$

$=\frac{6!}{3!3!} \times \frac{4!}{2!2!}$

$=20\times 6$ 

9. After meeting every participant shake hands with every other participant. If the number of handshakes is 66 find the number of participants in the meeting.

Answer- 

 Let there be n participants present in the meeting.                     

 A handshake occurs between 2 persons.      

 ∴ Number of handshakes = nC2.       

 Given 66 handshakes were exchanged.          

 ∴ 66 = nC2                                                     

 ∴ 66 =$\frac{n!}{2!(n-2)!}$               

 ∴ 66 × 2 =$\frac{n(n-1)(n-2)!}{(n-2)!}$

 ∴ 132 = n(n – 1)                                                

 ∴ n(n – 1) = 12 × 11                             

 Comparing on both sides, we get                     

 n = 12                                                                     

 ∴ 12 participants were present at the meeting.

10. If 20 points are marked on a circle how many chords can be drawn?

Answer-

There are 20 points on a circle.To draw a chord, 2 points are required.     

∴ the number of chords that can be drawn through 20 points on the circle.

= 20C2                                                        

  $=\frac{20!}{{2!18!}$   

$=\frac{20×19×18!}{{2×1×18!}$            

= 190.

Related Posts :- 

Permutation Combination Exercise 3.1

Permutation Combination Exercise 3.2

Permutation Combination Exercise 3.3

Permutation Combination Exercise 3.4

Permutation Combination Exercise 3.5


Permutation and Combination Exercise 3.6 11th Class MH Board
Permutation and Combination Exercise 3.6 11th Class MH Board


Permutation and Combination Exercise 3.6 11th Class MH Board