Permutation and Combination Exercise 3.6

                         Exercise 3.6

1.Find the value of

a)15C4

Answer-Here n=15, r=4                     

as,nCr=nr!(nr)!

=15!4!(154)!

=15.14.13.12.11!4.3.2.1

=5.7.13.3

=1365

b)80C2

Answer- n=80 ,n=2  

    as, nCr=nr!(nr)!

=80!2!(802)!

=80!2!78!

=80×79×78!2×78!

=40.79

=3260

c)15C4+15C4

Answer-

As, nCr+nCr=n+1Cr

So, n=15, r=4

15C4+15C4

=16C5

d)20C16+19C16

Answer-

=C1916+19C1519C16

=19!C15

=19!(1915)!

=19!15!4!

=19.18.17.16.15!15!.4.3.2.1

=19.6.17.2

=3876

2.Find n if

a) 6P2=n6C2
Answer-

6!(62)!=n6!2!4!

6×5×4!4!=n6×5×4!2!×4!

30=n(3.5)

So, n=2

b)2nC3:nC2=523
Answer-

2nC3nC2=523

2n!3!(2n3)!n!3!(n2)!=523

2n!3!(2n3)!×2!(n2)!n!=523

2n(2n1)(2n2)(2n3)!2(n2)!3!(2n3)!n(n1)(n2)!=523

4(2n1)=52

2n1=13

n=7

c) nCn3=84

Answer-

n!(n3)!3!=84

n(n1)(n2)(n3)!(n3)!3!=84

n(n1)(n2)3×2×1=84

n(n1)(n2)=8×9×7

n=9

 3.Find r if

a)14C2r:10C2r4=14310

Answer-

14!(2r)!(42r)!10!((2r4)!(142r)!=14310

14!(2r)!(42r)!×((2r4)!(142r)!10!

14.13.12.11.10!(2r4)!2r(2r1)(2r2)(2r3)(2r4)!10!=143:10

14.13.12.112r(2r1)(2r2)(2r3)=143:10

r(2r1)(2r2)(2r3)=14.13.12.11.10143.2

r(2r1)(2r2)(2r3)=720

r(2r1)(2r2)(2r3)=10.9.8

r=10

4. Find n and r if 

a) nPr and nCnr=120

Answer-

nPr    nCnr=120

n!(nr)!=720....(i)n!(nr)!r!=120  ....(ii)

dividing by (i) and (ii)

n!(nr)!×r!(nr)!n!=720120

                r!=6

so r=3

b)nCr1:nCr:nCr+1=20:35:42

Answer-

 As, nCr1:nCr=2035

 n!(r1)!(nr+1)!n!r!(nr)!=2035 

 n!(r1)!(nr+1)!×r!(nr)!n!=2035

 r(r1)!(nr)!(r1)!(nr+1)!(nr)!=2035

 rnr+1=2035

 35r=20(n-r+1)

 11r-4n=4  .....(i)

 now, nCr:nCr+1=35:42

 n!r!(nr)!n!(r+1)!(n(r+1))!=3542

 n!r!(nr)!×(r+1)!(n(r+1))!n!=3542

 (r+1)r!(nr1)!r!(n1)(nr1)!=3542

 r+1nr=3542

  42(r+1)=35(n-r)

  42r+42=35n-35r

 11r-5n=-6 ....(ii)

 So,    11r-4n=4

          11r-5n=-6

solving above equation we get the value of n=10

 and now substituting the value of n= 10 in eq (i) we get,

 11r-5(10)=-6

 11r=44

  r=4 and n=10

5. If  nPr=1814400 and nCr=45 find n+4Cr+3
Answer-

nPrnCr=181440045

n!(nr)!n!r!(nr)!=181440045

n!(nr)!×r!(nr)!n!=181440045

n!r!(nr)!(nr)!n!=181440045

r!=40320

r!=8.7.6.5.4.3.2.1

so, r=8

Also, nCr=45

nC8=45

=n!8!(n8)!

n(n1)(n2)(n3)(n4)(n5)(n6)(n7)=10.9.8.7.6.5.4.3.2.1

Compairing on both sides, we get

n=10

n+4Cr+1=14C11

=14!11!(1411)!

14C11=364 

6. If  nCr1=6435, nCr=5005, nCr+1=3003 Find rC3

Answer-

nCr1nCr=64355005

n!(r1)!(nr+1)!n!r!(nr)!=64355005

n!(r1)!(nr+1)!×r!(nr)!n!=\frac{6435}{5005}$

r(r1)!(nr)!(r1)!(nr+1)(nr)!=64355005

r(nr+1)==64355005

rnr+1=97

7r=9n-9r+9

16r-9n=9            ....(i)

nCrnCr+1=50053003

n!r!(r1)!n!(r+1)!(nr1)!=53

n!r!(r1)!(r+1)!(nr1)!n!=53

(r+1)r!(nr+1)!r!(nr)!n!=53

r+1nr=53

3(r+1)=5(n-r)

8r-5n=-3            ....(ii)

now, solving these equation
 
16r-9n=9
8r-5n=-3
r=9

rC5=9C5

=9!5!4!

=126 

7.Find the number of ways of drawing 9 balls from a bag that has 6 red balls 8 green balls and 7 blue was so that three balls of every colour are drawn.

Answer-

Total number ways of balls=8+5+7=18

Number of red balls=6

Number of green balls=5

Number of blue balls=7

9 balls are to be drawn 3 of each colour,

No. of ways of drawing 3 red balls of 6 red balls=6C3

similarly 3 green balls out of 5 geen balls=5C3

3 blue ball out of 7 blue balls=7C3

\therefore totalnumberways=6C3×5C3×7C3

=6!3!3!×5!3!2!×7!3!4!

=20×10×35

=7000 

8.It. find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls. 

Answer-

there are 6 boys and 4 girls

we have to select 3 boys out of 6 boys=6C3

we have to select 2 girls out of 4 girls=4C2

total number of ways

=6C3×4C2

=6!3!3!×4!2!2!

=20×6 

9. After meeting every participant shake hands with every other participant. If the number of handshakes is 66 find the number of participants in the meeting.

Answer- 

 Let there be n participants present in the meeting.                     

 A handshake occurs between 2 persons.      

 ∴ Number of handshakes = nC2.       

 Given 66 handshakes were exchanged.          

 ∴ 66 = nC2                                                     

 ∴ 66 =n!2!(n2)!               

 ∴ 66 × 2 =n(n1)(n2)!(n2)!

 ∴ 132 = n(n – 1)                                                

 ∴ n(n – 1) = 12 × 11                             

 Comparing on both sides, we get                     

 n = 12                                                                     

 ∴ 12 participants were present at the meeting.

10. If 20 points are marked on a circle how many chords can be drawn?

Answer-

There are 20 points on a circle.To draw a chord, 2 points are required.     

∴ the number of chords that can be drawn through 20 points on the circle.

= 20C2                                                        

$=\frac{20!}{{2!18!}$   

$=\frac{20×19×18!}{{2×1×18!}$            

= 190.

10. If 20 points are marked on a circle how many chords can be drawn?

Answer-

There are 20 points on a circle.To draw a chord, 2 points are required.

∴ the number of chords that can be drawn through 20 points on the circle.

= 20C2

$=\frac{20!}{{2!18!}$ 

$=\frac{20×19×18!}{{2×1×18!}$            

= 190.

11.find the number of diagonals of an n sided polygon. In particular, find the number of diagonals when.

a) n=10     b)n=15   c)n=12   d)n =8

Answer-

a)In an n-sided polygon, there are ‘n’ points and ‘n’ sides.               

∴ Through ‘n’ points we can draw nC2 lines including sides.

∴ Number of diagonals in n sided polygon.

= nC2 – n .........(n = number of sides)           

n = 10                                                             

nC2 – n = 10C2 – 10                                

10.91.210                   

= 45 – 10                                                         

= 35

b)There are n vertices in the polygon of n-sides.

 If we join any two vertices, we get either side or the diagonal of the polygon.  

Two vertices can be joined in nC2 ways.      

∴ total number of sides and diagonals = nC2 But there are n sides in the polygon.        

∴ total number of the diagonals = nC2 – n       

n = 15 sides                                                       

∴ the number of diagonal that can be drawn. 

= 15C2 – 15                              

=15×14×13!2×13!15

=15×142-15

= 105 – 15       

= 90

c)In an n-sided polygon, there are ‘n’ points and ‘n’ sides.

∴ Through ‘n’ points we can draw nC2 lines including sides.      

∴ Number of diagonals in n sided polygon.

= nC2 – n   ...(n = number of sides)

n = 12, 

nC2 – n  = 12C2 – 121 

=2×111×212

= 66 – 12                                                               

= 54

d)There are n vertices in the polygon of n-sides.          

  If we join any two vertices, we get either side or the diagonal of the polygon.

Two vertices can be joined in nC2 ways.          

∴ total number of sides and diagonals = nC2

But there are n sides in the polygon.

∴ total number of the diagonals = nC2 – n 

n = 8 sides                                               

∴ the number of diagonals that can be drawn 

12.There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.

Answer-

There are 20 lines such that no two of them are parallel and no three of them are concurrent. 

Since no two lines are parallel              

∴ they intersect at a point     

∴ Number of points of intersection if no two lines are parallel and no three lines are concurrent.             

 = 20C2                           

=20!2!18!

=20×19×18!2×1×18!

  = 190 

13.10 points are plotted on a plane. Find the number of straight lines obtained by joining these points if   

A)no three points are collinear.

B) four points are collinear.

Answer-

A )line is drawn by joining 2 points from the given 10 points.    

  ∴ number of straight lines= 10C2                                          

 =10!2!8!

=10×9×8!2×8!

= 45, if no three points are collinear. 

B) when four points are collinear then the total number of lines= 10C2 but it contains lines using that 4 collinear points make only one line

lines using 4 points = 4C2

No. of ways is 4 points are collinear = 10C2 - 4C2 +1

= 45 -  4!2!2!+1

=46- 6

=40 

14.Find the number of triangles formed by joining 12 points if       a) no three points are collinear

b) 4 points are collinear.

Answer-

a)A triangle can be formed by selecting 3 non-collinear points

3 points be selected from 12 points

12C3=12!9!3!

=12.11.10.9!9!3!

=220 ways

b)There are 12 points on the plane

when 4 of these points are collinear

number of triangles that can be from these points=12C34C3

=220-4!3!1!

=220-4 

=216

15. A word has three consonant 8 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are use and?

Answer-

4 consonants can be selected from 8 consonants in 8C4 ways 2 vowels can be selected from 3 vowels in 3C2

number of words with 4 consonants and 2 vowels

=8C4×3C2

=8!4!4!×3!2!1!

=70 × 3

=210

now, each of these 6 letters can be arranged in 6P6 ways=6!

total numbers can be formed 4 consonants and 2 vowels

=210×6!

=151200 

16. Find n if,

(i) ^nC_8=^nC_{12}

Answer-

nC12=nC8 nCx=nCy then  either  x=y or  x=n-y 

\therefore 12=n-8    \hspace{2cm} \because 12\neq 8 

n=20

(ii)23C3n=23C2n+1

Answer-

23C3n=23C2n+3 \because nCx=nCy  then  either  x=y  or  x=n-y

\therefore 3n=2n+3  or 3n+2n+3=23                                        

  n=3 or 5n=20              

\therefore  n=3 or n=4

(iii)21C6n=21Cn25

Answer- 

21C6n=21Cn25                                              

nCx=nCy then either x=yorx=ny      

   6n=n2+5    or     6n=21(n2+5)

   n26n+5=0   or     6n=21n25

   (n1)(n5)=0   or     n2+6n16=0

   n=1 or n=5     or     n=-8  or n=2     

if n=5 then n2+5=30>21   or    n8so,n=2\\               

(iv)^{2n}C_{r-1}=^{2n}C_{r+1}

Answer-

2nCr1=2nCr+1                                              

  nCx=nCy then either x=y or x=n-y                  

\therefore  r-1=r+1     or        r-1=2n-r-1                              

\therefore   r=1+1      or        r-1+r+1=2n                             

\therefore     r=2      or            r=n

(v) nCn2=15

Answer-

nCn2=15

n!(n2)!(nn+2)!=15   

n(n1)(n2)!(n2)!2!=15                                      

n(n1)2=15                                              

 n(n-1)=15.2                                  

 n(n-1)=30   

 n(n-1)=6.5

  so, n=6

17. Find x if nPr=x \times ^nC_r 

Answer-

nPr=x \times nCr    

n!(nr)!=x \times  n!r!(nr)!

1=x×1r!

 x=r! 

18. Find r if

11C4+11C5+12C6+13C7=^{14}C_r$

Answer-   

11C4+11C5+12C6+13C7=14Cr

  As,  nCr+nCr1=n+1Cr

 14Cr=11C4+11C5+12C6+13C7

 =11+1C5+12C6+13C7

 =12C5+12C6+13C7

 =12+1C6+13C7

 =13C6+13C7

 =14C7  

  so, r=7

  19. Find the value of r=1421rC4\\

Answer- 

 21rC4 

=211C4+212C4+213C4+214C4

=20C4+19C4+18C4+17C4

    nCr+nCr1=n+1Cr 

nCr1=n+1CrnCr

=20C4+19C4+18C4+18C517C5

=20C4+(19C4+19C5)17C5

=20C4+19+1C517C5

=20C4+20C517C5

=21C517C5

 =21!5!(215)!17!5!(175)!

 =21!5!16!-17!5!12!

 =21.20.19.18.17.16!5!16!-17.16.15.14.13.12!5!12!

 =21.20.19.18.175.4.3.2.1-17.16.15.14.135.4.3.2.1

  = 20349 - 6188                                                              

  =1416                                           

20. Find the differences between the greatest values in the following:

(a) $^{14}C_r and ^{12}C_r

Answer-

here n=14 is an even 

14Cr then the greatest value of nCr occurs at r=n2

r=142

r=7

Greatest value of 14Cr=14C7

=14!(147)!

=14.13.12.11.10.9.8.7!7!(147)!

=14.13.12.11.10.9.87.6.5.4.3.2.1

=3432

Also, for the greatest values of ^{12}C_r $

here, n=12 r=122=6

12C6

=12!6!(126)!

=12.11.10.9.8.7.6!6!6!

=12.11.10.9.8.76.5.4.3.2.1

=924

the difference between 

=14Cr and 12Cr

=3432-964

=2508

(b)13Cr and 8Cr

Answer-

the greatest value of

 nCr r=n2 if n is even and if n is odd r=n12 

13Cr=

here n=13 r=1312

r=122=6

13Cr=13C6

=13!6!7!

=13.12.11.10.9.8.7!7!6.5.4.3.2.1

=1716

so,8Cr here n=8

n=\frac{8}{2}=4

8C4

=8!4!6!

=8.7.6.5.4!4!6!

=70

the difference between

=13Cr and 8Cr

=1716-70

=1646 

(c)15Cr and 11Cr

Answer-

the greatest value of

 nCr r=n2 if n is even and if n is odd r=n12 

15Cr

here, n=15 so r=n12=1512=7

15Cr=15C7

=15!7!8!

=15.14.13.12.11.10.9.8!8!.7.6.5.4.3.2.1

=6435

11Cr

here, n=11 so r=1112=5

11Cr=11C5=11!5!6!

=11.10.9.8.7.6!6!5.4.3.2.1

=462

the difference between 15Cr and 11Cr 

=6435-462

=5973 

21.In how many ways can a boy invite his five friends to a party so that at least 3 join the party?

Answer-

Number of friends n=5

Atleast 3 friends join party

5C3+5C4+5C5

=5!3!(53)!+5!4!+1

=10+5+1

=16 

22. A group consists of 9 men and 6 women.A team of 6 is to be selected.How many possible selections will have atleast three women.

Answer-

There are 9 men and 6 women

will have 3 women atleast

=3W3M+4W2M+5W1M+6W no men

=6C3×9C3+6C4×9C2+6C5×9C1+1

=1680+540+54+1

=2275

Therefore, 2275 can be formed if the team consist atleast 3 women 

23. A committee of 10 person is to be formed from a group 10 women 8 men.How many possible committees will have at least five women? How many possible committee will have men in majority?

Answer-

There are 10 women and 8 men.

A committee of 10 persons is to be formed.If atleast 5 women have to be selected in a committee

so, possible selection are

5 Women 5 Men          6 Women 4 Men

7 Women 3 Men          8 Women 2 Men

9 Women 1 Men          10 Women 0 Men

the number of ways of forming committees such that at least 5 women are included

=10C5×8C5+10C6×8C4+10C7×8C3+10C8×8C2+10C9×8C1+10C10×8C0

=252.56+210.70+120.56+45.28+80+1

=36873

Men in Majority

men in majority means 6,7,8

=8C6×10C4+78×10C3+8C8×10C2

=5880+960+45

=6885 

24. A question paper has two sections, section 1 has 5 questions and section 2 has 6 questions a student must answer at least two questions from each section among six question hi answers. How many different choices does the student have in choosing questions?

Answer-

There are 11 question out of which section 1 has 5 question and section 2 has 6 section\\

possible choices S I-2 S II-4, S I-3 S II-3 S I-4 S II-2

5C2×6C4+35×6C3+5C4×6C2

=10×15+10×20+5×15

=150+200+75

=425

in 425 ways student can select 6 questions taking atleast 2 question from each

25.There are 5 wicket keepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicket keeper and atleast 4 bowlers in the team how many different teams can be formed.

Answer-

Among 22 players there are 3 wicketkeepers+5 bowlers=8players and the remaining 22-8=14 players batsmen.

i)1 wicketkeeper 4 bowlers 6 players

ii)1 wicketplayer 5 bowler 5 players

now, number of selection in 

(i)3C1×5C4×14C6+3C1×5C5×14C5

=35!4!14!6!9!+314!5!9!

=45045+6006

=51051

26.5 students are selected from 11 how many ways can the students be selected if\\

A) two specified students are selected?      

B) to specified student are not selected?

Answer-

A)5 students are to be selected from 11 students

when 2 specified students are always together

then remaining student can be selected from 11-2=9 students

number of ways of selecting 3 students from 9 students

= 9C3

=9!3!6!

=84

selection is done in 84 ways when 2 specified students are included

B)Number of students is 11 we have to select 5 students

2 particular student are not selected

if two particular student are not selected then from remaining (11-2)=9 students, we have to select 5 students

This can be done^9C_5$ ways

total number of selections

9C5

=9!5!4!

=9.8.7.6.5!5!4!

=196

                                

Thanks for reading inlogical math


Related Posts :- 

Permutation Combination Exercise 3.1

Permutation Combination Exercise 3.2

Permutation Combination Exercise 3.3

Permutation Combination Exercise 3.4

Permutation Combination Exercise 3.5


Permutation and Combination Exercise 3.6 11th Class MH Board
Permutation and Combination Exercise 3.6 11th Class MH Board


Permutation and Combination Exercise 3.6 11th Class MH Board