Factorial Notation

Factorial  Notation


For any natural number from 1 to n that is n factorial or n! Is expressed as,

1×2×3×....×(n-2)×(n-1)×n.

Note: the factorial notation that that can also be defined as a product of natural numbers from  n to 1.

i.e, n!=n×(n-1)×(n-2)×...×3×2×1

5!=5×4×3×2×1=120

*Properties of factorial notation:-

1)  0! = 1
2) (m×n)!  ≠ m!×n!
3) (m+n)! ≠ m!+n!
4) (m-n)! ≠ m!-n!
5) (m÷n)! ≠ m!÷n!

Ex 1) Find the value of 6!
Answer-
6 x 5 x 4 x 3 x 2 x 1= 720

Ex 2) Find n if (n+6)!=56(n+4)!
Solution-
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2
Find n if (n+6)!=56(n+4)!


Ex Show that `\frac{\text {1}2!}{\text{5}!7!}+\frac{\text{1}2!}{\text{6}!6!}=\frac{\text{1}3!}{\text{6}!7!}`

Solution:
      L.H.S. =
`\frac{\text{1}2!}{\text{5}!7!}+\frac{\text{1}2!}{\text{6}!6!}`
                  =`12!\left[\frac{\text{1}}{\text{5}!76!}+\frac{\text{1}}{\text{5}!66!}\right]`
                              (since, 7!=7×6!   6!=6×5!)
                  =`\frac{\text{12!}}{\text{5!}6!}\left[\frac{\text{13}}{\text{6 7}}\right]`
                  =`\frac{\text{12! 13}}{\text{(5! 6)*(6! 7)}}`
                  =`\frac{\text{13!}}{\text{6! 7!}}`
                  =R.H.S
          
Factorial Notation 11th Class Maharashtra Board EXERCISE 3.2