Differentiate following w.r.t x Exercise 1.1 x

  Differentiate the following w.r.t x Exercise 1.1

3)Differentiate the following w.r.t x :

(x)$\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$

Solution- $\frac{dy}{dx}=\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$

$=\frac{(e^{2x}+e^{-2x})\frac{dy}{dx}(e^{2x}-e^{-2x})-(e^{2x}-e^{-2x})\frac{dy}{dx}(e^{2x}+e^{-2x})}{(e^{2x}+e^{-2x})^2}$

$=\frac{(e^{2x}+e{-2x})(e^{2x}\frac{d}{dx}(2x)-e^{-2x}\frac{d}{dx}(-2x))-(e^{2x}-e^{-2x})(e^{2x}\frac{d}{dx}(2x)+e^{-2x}\frac{d}{dx}(-2x))}{(e^{2x}+e^{-2x})^2}$

$=\frac{(e^{2x}+e^{-2x})(e^{2x}(2)-e^{-2x}(-2))-(e^{2x}-e^{-2x})(e^{2x}(2)+e^{-2x}(-2))}{(e^{2x}+e^{-2x})^2}$

$=\frac{(e^{2x}+e^{-2x})(2e^{2x}+2e^{-2x})-(e^{2x}-e^{-2x})(2e^{2x}-2e^{-2x})}{(e^{2x}+e^{-2x})^2}$

(xiv)$log\left[\sqrt{\frac{1+cos\frac{5x}{2}}{1-cos\frac{5x}{2}}}\right]$

(xv)$log\left[\sqrt{\frac{1-sinx}{1+sinx}}\right]$


Differentiate following w.r.t x Exercise 1.1 x
Differentiate following w.r.t x Exercise 1.1 X